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Abstract
We investigate systems of real scalar fields in bidimensional spacetime,
dealing with potentials that are small modifications of potentials that admit
supersymmetric extensions. The modifications are controlled by a real
parameter, which allows the implementation of a perturbation procedure when
such a parameter is small. The procedure allows one to obtain the energy
and topological charge in closed forms, up to first order in the parameter. We
illustrate the procedure with some examples. In particular, we show how to
remove the degeneracy in energy for the one-field and the two-field solutions
that appear in a model of two real scalar fields.

PACS numbers: 1130P, 1110L, 0230, 0420

1. Introduction

Domain walls are defect structures that appear in systems engendering spontaneous breaking
of discrete symmetry. They are of interest for instance in condensed matter, as interfaces in
magnetic materials [1], as seeds for pattern formation [2], and as interfaces in ferroelectric
crystals [3–5], and in cosmology, as seeds for the formation of structures [6, 7] in the early
universe. Domain walls spring from the immersion of kink-like solutions of (1, 1) spacetime
dimensions to higher spatial dimensions. In general, kinks or domain walls appear in scalar
field models, but they may also be present in extended systems, which include fermionic fields,
with or without supersymmetry.

Recently, the study of supersymmetric models has brought new issues, such as for instance
in the investigations of a Wess–Zumino model [8,9] engendering theZ3 symmetry. This model
allows the identification of a Bogomol’nyi equation [10] for a triple junction that breaks 1

4
supersymmetry of the model. We learn from these works that supersymmetry helps easing
calculations concerning the presence of the triple junction [11,12]. However, supersymmetry
seems to play no central role when the issue is the tiling of the plane and not the triple
junction itself [13–15]. Furthermore, in [16] it was shown how one could entrap a planar
regular hexagonal network of defects inside a domain wall. This model involves three real
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scalar fields, and engenders the Z2 × Z3 symmetry, but it seems to have no supersymmetric
extension.

These facts motivate the study of bosonic models that do not support supersymmetric
extensions. However, to keep track of supersymmetry we investigate models that are close to
the real bosonic portions of supersymmetric systems. These models are defined by potentials
that contain two parts: the first part defines the real bosonic portion of a supersymmetric
system; the second part defines the extended model. The first part alone constitutes the basic
model, which supports static field configurations that minimize the energy, attained by static
field configurations that solve first-order differential equations. In particular, we examine
models that support topological solutions that belong to the same topological sector, and are
degenerate, having the very same energy. An example of this was investigated in [17], in a
model of two coupled scalar fields. This model has recently been extended to the case of several
scalar fields in [18]. We explore the possibility of extending this system, in order to remove the
degeneracy between the one-field and the two-field solutions. This investigation is of intrinsic
interest, and may also help in examining applications to cosmology and to condensed matter.
In cosmology we recall the usual route [6, 7], and also the new possibility [16]. In condensed
matter, we envisage other issues, concerning for instance the presence of Ising and Bloch
wall interfaces in magnetic materials described by the anisotropic XY model [2, 16], and the
structural phase transition in ferroelectric crystals [5, 19].

The real bosonic sector of supersymmetric systems described by n chiral superfields
�1
c,�

2
c, . . . , �

n
c contains n real scalar fields φ1, φ2, . . . , φn. The potential V is written

in terms of the superpotential W , in such a way that for V = V (φ1, φ2, . . . , φn) and
W = W(φ1, φ2, . . . , φn) we obtain

V = 1
2W

2
φ1

+ 1
2W

2
φ2

+ · · · + 1
2W

2
φn

(1)

where Wφi = ∂W/∂φi, i = 1, 2, . . . , n. These systems have been investigated in several
different contexts in [15,17,19], and in references therein. In this paper we investigate systems
where the potential includes an extra term, that modifies the above potential according to

Vε = V + 1
2εF (2)

where ε is a real parameter, and F = F(φ1, φ2, . . . , φn) is in principle an arbitrary function
of the fields. In this paper we show that if ε is small, we can develop a perturbation procedure
that gives closed results up to first order in ε. The perturbation procedure is based on
previous investigations [20, 21], and works nicely for potentials of the form (2) when the
function F obeys some restrictions. We start our investigations using natural units, but we
work with dimensionless fields and coordinates, and sometimes we refer to the model with
ε = 0 as the primary system, and to the complete model, with ε �= 0, as the extended
system.

2. General considerations

In order to better understand the procedure, let us first consider models that are bosonic portions
of supersymmetric theories. In this case we have

L = 1
2

n∑
i=1

∂αφi∂
αφi − V (φ1, . . . , φn) (3)
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where V is given by equation (1). We work in (1, 1) spacetime dimensions. The equations of
motion for static fields are

d2φ1

dx2
= Wφ1Wφ1φ1 + · · · +WφnWφnφ1

d2φ2

dx2
= Wφ1Wφ1φ2 + · · · +WφnWφnφ2

...

d2φn

dx2
= Wφ1Wφ1φn + · · · +WφnWφnφn .

These second-order equations are solved by field configurations that solve the first-order
differential equations

dφ1

dx
= Wφ1

dφ2

dx
= Wφ2 . . .

dφn
dx

= Wφn.

These are the Bogomol’nyi equations. The energy of the static solutions can be written as

E = 1

2

∫ ∞

−∞
dx

n∑
i=1

[(
dφi
dx

)2

+W 2
φi

]
. (4)

In general, the system may have several distinct sectors, which may be identified by the two
vacuum states the static solution connect. Thus, if we use the set of numbers {va, vb, vc, . . .}
to mark the vacuum states of the model, we can write

Eab = EabB +
1

2

∫ ∞

−∞
dx

n∑
i=1

(
dφi
dx

−Wφi
)2

. (5)

Here EabB = |Wab| and Wab = W(va)−W(vb). A pair of vacua defines a topological sector,
and in the sector (ab) the energy is minimized to the bound EabB for field configurations
that obey the above first-order equations. Solutions of the Bogomol’nyi equations are called
Bogomol’nyi–Prasad–Sommerfield solutions [10, 22], and we refer to this bound as the BPS
bound. It is possible thatW(va) = W(vb), giving a vanishingWab. In this case the topological
sector cannot support BPS states, and we refer to this as a non-BPS sector (see [15]). The
topological features of these solutions can be accounted for by introducing, for instance, the
topological current [14]

jα = 1
2ε
αβ∂β� (6)

where � is a column vector, such that �t = (φ1 φ2 · · ·φn).
We illustrate the general situation with some examples. We work with natural units.

However, we avoid unimportant considerations by considering the Lagrangian density L,
written in terms of dimensionless fields and coordinates. The usual form of the Lagrangian
density isL′ = γL, whereγ is a constant, which carries the correct dimension of the Lagrangian
density in natural units.

2.1. One real scalar field

In the case of one real scalar field we have

L = 1
2∂αφ∂

αφ − V (φ). (7)
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The potential V (φ) specifies the system. As an example we consider the model

V (φ) = 1
2φ

2 − |φ| + 1
2 . (8)

This potential was recently considered in [23]. There are two minima, at the values
{v1 = 1, v2 = −1}. The equation of motion is d2φ/dx2 = φ − φ/|φ|. It has the solutions
φ±(x) = ±(x/|x|)[1 − exp(−|x|)]. This model can be written in terms of the function

W(φ) = φ − 1
2 |φ|φ. (9)

This means that the topological sector is a BPS sector. The BPS solution satisfies

dφ

dx
= 1 − |φ|. (10)

This solution is φ(x) = (x/|x|) [1 − exp(−|x|)]. It has a kink-like profile, and is linearly
stable [24], minimizing the energy to EB = 1.

2.2. Two real scalar fields

We exemplify the case of two real scalar fields by considering the superpotential

W(φ, χ) = φ − 1
3φ

3 − rφχ2 (11)

where r is a real parameter. Here the potential becomes

V (φ, χ) = 1
2 (φ

2 − 1)2 − rχ2 + r(1 + 2r)φ2χ2 + 1
2 r

2χ4. (12)

There are two minima for r < 0, v1 = (1, 0), v2 = (−1, 0). For r > 0 there are four minima,
the two former ones, and also the other two v3 = (0,√1/r), v4 = (0,−√

1/r).
In this model the first-order equations are

dφ

dx
= (1 − φ2)− rχ2 (13)

dχ

dx
= −2rφχ. (14)

We see that for χ → 0 the first-order equations demand dφ/dx = (1 − φ2), and the BPS
defect solution is φ(x) = tanh(x). However, for φ → 0 the first-order equations demand that
χ2 = 1/r , that is, that the χ field should be at the corresponding minima. These results are
manifestations that the sector defined by the minima (±1, 0) is a BPS sector, while the other
sector, defined by the minima (0,±√

1/r) is a non-BPS sector, and the non-BPS solutions are
stable if and only if 1/r < 1 [15].

The solution φ = tanh(x) and χ = 0 is a one-field solution, but the system also supports
two-field solutions. In the sector that connects the minima (±1, 0), the two-field BPS solutions
have the explicit form

φ(x) = tanh(2rx) (15)

χ(x) = ±
√

1

r
− 2 sech(2rx) (16)

which requires that 1/r > 2. The one- and two-field solutions that appear in the sector
connecting the minima (±1, 0) have the same energy, E = 4

3 . In the (φ, χ) space the real
line x ∈ R is mapped to line segments: for the one-field solution we obtain a straight line
segment going from (−1, 0) to (1, 0), and for the two-field solutions we obtain an elliptic arc,
obeying φ2 + χ2/(1/r − 2) = 1. These solutions map the Ising and Bloch walls that appear
in magnetic systems, respectively, and represent solutions of the anisotropic XY model, that
describe interfaces between ferromagnetic domains [2, 16].
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3. Extended systems

Here we deal with systems defined by extended potentials, that differ from the above primary
potentials by some slight modifications. We start by dealing with the general model

Vε = 1
2

n∑
i=1

W 2
φi

+ 1
2εF (φ1, . . . , φn) (17)

where ε is a real parameter, infinitesimal. In this case we can use such a parameter to control
the procedure of extending the result beyond the ε-independent value. The correction to
the potential depends on F = F(φ1, . . . , φn). In general, we may have two different types
of functions: functions that respect and functions that do not respect the symmetry of the
original system. Both type of functions are important to describe situations where the system
is modified by the presence of external fields, chemical potentials, etc. However, in this paper
we are interested mainly in topological solitons, in investigating the topological sectors of the
model. Thus, we consider the case of functions that respect some symmetry of the primary
system. In this case the function F accounts for modifications of the original system, without
destroying the topological sector one is investigating. This means that in the set of possible
vacuum states {va, vb, vc, . . .} of the primary system, at least the vacua va and vb remain
present, although they can be slightly changed to vεa and vεb . We shall be investigating slight
modifications in the topological sectors of the BPS type, modifications that do not destroy the
sectors themselves. In this case we write the static solution φε1(x), φ

ε
2(x), . . . , φ

ε
n(x) of the

extended system in terms of the static solution of the original model in the form, up to first
order in ε

φεi (x) = φi(x) + ε ηi(x) i = 1, 2, . . . , n. (18)

In the extended system, the energy of static solutions has the form

E = 1

2

∫ ∞

−∞
dx

n∑
i=1

[(
dφi
dx

)2

+W 2
φi

]
+

1

2
ε

∫ ∞

−∞
dx F(φ1, φ2, . . . , φn). (19)

It can be written as, in the case of the BPS sector that connects the vacuum states labelled by
a and b,

Eab = 1

2

∫ ∞

−∞
dx

n∑
i=1

(
dφi
dx

−Wφi
)2

+ EabB +
1

2
ε

∫ ∞

−∞
dx F(φ1, φ2, . . . , φn). (20)

We now follow [20]. We see that the field φεi given by equation (18) shows that the first term
in the above expression for the energy do not contribute to first order in ε. This fact allows us
to write the energy in the form

Eab = EabB + 1
2ε

∫ ∞

−∞
dx F(φ1, φ2, . . . , φn) + O(ε2). (21)

Here EabB = |Wab| and Wab = W(vεa) −W(vεb). The correction to the potential is small, and
we separate two cases: first, the case where the correction does not change the minima of the
primary potential, that is, the case where vεa = va and vεb = vb; and second, the case where
the correction slightly modifies the minima of the primary potential. In the first case both
φεi (x) and φi(x) have the same asymptotic behaviour, thus ηi(x) must vanish asymptotically;
in the second case φεi (x) is asymptotically different from φi(x), thus ηi(x) cannot vanish
asymptotically. In both cases the term EabB exactly reproduces the corresponding term in the
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primary system, up to first order in ε. This is so because W [φε1(±∞), . . . , φεn(±∞)] can be
expanded to give

W [φ1(±∞), . . . , φn(±∞)] + ε
n∑
i=1

ηi (±∞) dW

dφi

∣∣∣∣∣
φi(±∞)

.

However, we know that φi(±∞) are minima of the primary model, and are extrema of W.
Thus, the second term in the above expression vanishes. For the topological charge, in the
first case we see that it does not change, giving QεT = QT . However, in the second case
the topological charges change according to QεT = QT + ε $Q, where QεT , QT and $Q are
n-component vectors, and$Q accounts for the difference ηi(∞)− ηi(−∞), i = 1, 2, . . . , n.

The above results are general results, and we illustrate the general procedure with some
examples, splitting the investigation into the two subsections that follow, which deal with one
and two real scalar fields separately.

3.1. The case of one real scalar field

In the case of one field, let us first consider the φ4 model, defined by the potential

V (φ) = 1
2 (φ

2 − 1)2. (22)

We consider F1(φ) = (φ2 − 1)2, which is an example where the correction does not change
the minima of the primary system, and soQεT = QT = 1. In this case the energy becomes

E = EB
(
1 + 1

2ε
)

(23)

where EB = 4
3 . It can be greater (ε > 0) or less (ε < 0) than the energy of the unperturbed

system.
We note that the above F1(φ) allows us to rewrite the potential as

V (φ) = 1
2 (1 + ε)(φ2 − 1)2. (24)

This potential requires that ε > −1, and shows that the extended system is very much like the
primary model, with the coupling for self-interaction changed by the ε term. In this case we
can find the energy of the static solution exactly. It is

E = EB
√

1 + ε. (25)

For ε very small, we expand the above result to obtain the former answer, equation (23), and
this shows that our approach works correctly.

As a second example, let us consider the same primary model and another function

F2(φ) = (1 − φ2). (26)

In this case the correction does change the minima of the primary potential. The new minima
are at ±(1 + ε/4). The energy is

E = EB
(
1 + 3

4ε
)
. (27)

It can be greater (ε > 0) or less (ε < 0) than the energy of the unperturbed system. The
topological charge changes toQεT = QT (1 + ε/4).

Here we also note that with the above correction of equation (26) the potential can be
rewritten in the form

V (φ) = 1
2

(
φ2 − 1 − 1

2ε
)2

(28)
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which is correct to first order in ε. In this case the energy of the static solution is

E = EB
(
1 + 1

2ε
)3/2

. (29)

However, since ε is very small, we expand the above result to obtain the former answer,
equation (27). We note that the modification in the minima of the potential changes the
topological charge, and also the energy of the topological solution. The energy increases or
decreases, depending on the increasing or decreasing of the spontaneous symmetry breaking
parameter.

We now consider the model defined in equation (8). We extend this model with the above
F2(φ). The new potential is

Vε(φ) = 1
2φ

2 − |φ| + 1
2 + 1

2ε(1 − φ2). (30)

For ε �= 0, small, the minima change from v± = ±1 to vε± = ±(1 + ε). The energy of the
topological solution changes to

E = 1 + 3
2ε. (31)

We see that the energy decreases when the spontaneous symmetry breaking parameter
decreases.

We note that the above potential can be written as

V (φ) = 1

2

(√
1 + ε − |φ|√

1 + ε

)2

. (32)

This result is valid up to first order in ε. It allows us to introduce a superpotential, and the
first-order equation is

dφ

dx
=

√
1 + ε − |φ|√

1 + ε
. (33)

It has the BPS solution

φ(x) = (1 + ε)
x

|x|
(
1 − e−|x|/(1+ε)

)
. (34)

This shows that both the amplitude and width of the former kink-like solution change in the
extended model. The energy is (1 + ε)3/2, but since ε is small we can expand this result to
obtain the former answer, given by equation (31).

3.2. The case of two real scalar fields

The case of two fields is more involved, and we envisage several distinct possibilities of
illustrating this situation. We consider the example presented in section 2. We extend that
model with the function

F1(φ, χ) = (1 − φ2). (35)

In this case, in the BPS sector defined by the minima (±1, 0) the correction to the one-field
solution is

E1
1 = EB

(
1 + 3

4ε
)
. (36)

In the case of the two-field solution (15) and (16) we obtain

E1
2 = EB

(
1 +

3

8
ε

1

r

)
. (37)
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We introduce the ratio between energies, R = E2/E1. We see that

R1 = 1 +
3

8
ε

(
1

r
− 2

)
. (38)

We consider another perturbation

F2(φ, χ) = rχ2. (39)

It gives

E2
1 = EB (40)

and

E2
2 = EB

[
1 +

3

8
ε

(
1

r
− 2

)]
. (41)

They give

R2 = 1 +
3

8
ε

(
1

r
− 2

)
. (42)

We see thatR1 = R2. The ratioR = E2/E1 does not depend on the way one extends the model,
using F1 = (1 −φ2) or F2 = rχ2. We note that the extension with F1 = (1 −φ2) changes the
minima of the primary model from (±1, 0) to (±1 ± ε/4), 0). Thus, the topological charge
of the sector changes according to

QT =
(

1

0

)
→ QεT = QT + ε

( 1
4

0

)
. (43)

The other extension, that uses F2 = rχ2, does not change the minima (±1, 0), so the
topological charge in this BPS sector remains the same QεT = QT . The above examples
show two distinct ways of removing the degeneracy between the standard one- and two-field
solutions (15) and (16). The two-field solutions are less energetic for ε < 0. This means that
one favours the non-trivial two-field configuration when the symmetry breaking parameter
decreases in one or in the two φ and χ directions.

There is another way of removing the degeneracy of the one- and two-field solutions that
appear in the sector connecting the minima (±1, 0). We consider the case where the extra part
contains interactions between the two fields, for instance

F
(k)
3 (φ, χ) = rφ2kχ2 k = 1, 2, . . . . (44)

In this case the minima of the primary system do not change, so the topological charge is not
modified. The same happens to the energy of the one-field solution. However, the energy of
the two-field solutions changes to

E(k) = EB +
1

2
ε

(
1

r
− 2

)
1

2k + 1
. (45)

We see that in the limit k → 0 one obtains the former result, given by equation (41). We also
see that the sign of ε makes the energy density of the two-field solutions higher (ε > 0) or
lower (ε < 0) than the energy density of the one-field solution, removing the degeneracy they
have in the primary system.

In the former model of two real scalar fields with the functionF1(φ, χ) as in equation (35),
the potential has the form

Vε(φ, χ) = 1
2 (φ

2 − 1)2 − rχ2 + 1
2 r

2χ4 + r(1 + 2r)φ2χ2 + 1
2ε(1 − φ2). (46)
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There are four minima, two at (0, χ±), χ± = ±√
1/r , and two at (φ±, 0), φ± = ±(1 + ε/4).

We compare this potential with the potential of the primary model. The presence of the extra
term shows that, for r > 1 the stable non-BPS solution implies

Vε(φ, 0) = 1
2 (φ

2 − 1)2 + 1
2ε(1 − φ2) (47)

and

Vε(φ,±
√

1/r) = 1
2φ

4 +
(
2r − 1

2ε
)
φ2 + 1

2ε. (48)

This shows that the (squared) mass of the φ-meson is, inside the χ -kink

m2
φ(in) = 4

(
1 + 1

2ε
)
. (49)

Outside the χ -kink we obtain m2
φ(out) = 4r − ε, which gives the ratio

m2
φ(in)

m2
φ(out)

= 1

r

[
1 +

1

2

(
1 +

1

2r

)
ε

]
. (50)

Thus, if the non-BPS χ -kink entraps φ-mesons in the primary system, the entrapment is still
more efficient in the extended system, for ε < 0. We see that deviations from the BPS bound
may improve the efficiency of the mechanism for the entrapment of the other field.

3.3. Another case

Let us now consider the model investigated in [16]. It is described by three real scalar fields,
and the potential has the form

V (σ, φ, χ) = 2
3

(
σ 2 − 9

4

)2
+

(
rσ 2 − 9

4

)
(φ2 + χ2) + (φ2 + χ2)2 − φ(φ2 − 3χ2). (51)

The projection with (φ, χ)→ (0, 0) gives

V (σ) = 2
3

(
σ 2 − 9

4

)2
. (52)

This potential can be written with the superpotentialW(σ) = (3√
3/2)σ − (2√

3/9)σ 3. This
fact shows that the defect σ(x) = 3

2 tanh(
√

3x) that appears in this case is a BPS defect. We
can then extend this model adding to the potential in equation (51) a term depending on the σ
field, for instance

f (σ) = 1
2ε

(
3
2 − σ 2

)
. (53)

We use former results to see that this term contributes to decreasing or increasing the energy of
the basic defect, increasing or decreasing the efficiency of the mechanism for the entrapment
of the network the other two fields φ and χ may generate.

4. Comments

In this paper we have examined systems described by real scalar fields, in which the energy
of static field configurations is in the vicinity of the BPS bound. This bound is attained by
field configurations that solve first-order equations, and minimize the energy. The BPS bound
appears in the real bosonic sector of supersymmetric theories described by chiral superfields.
The systems we have investigated are extensions of primary systems, described by potentials
given by the functionsW = W(φ1, φ2, . . .) and F = F(φ1, φ2, . . .), in the specific form

1
2W

2
φ1

+ 1
2W

2
φ2

+ · · · + 1
2W

2
φn

+ 1
2 ε F (φ1, φ2, . . . , φn).
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The parameter ε is real, and is used to control the deviation from the primary system, described
in terms of the superpotentialW .

In the extended system, if the static solutions are similar to the solutions one finds in the
primary system, that is, for φεi (x) = φi(x)+ε ηi(x), we could examine the energy related to the
new defect solutions φεi (x), and write the first corrections in ε in a closed form, independently
of the specific form of the new defect solution itself. The formal results are of direct interest
to field theory, where they may be used to improve the mechanism for the entrapment of the
other field [25–30].

We have investigated specific systems, and we have found diverse possibilities of removing
the degeneracy between different types of solutions, without destroying the degeneracy of the
vacuum states. The examples we have presented serve to illustrate some practical possibilities
of removing defect degeneration, and this is of direct interest in application in specific physical
situations. In ferroelectric crystals, for instance, the order parameters that control structural
phase transitions may be changed by the application of external pressure along specific planar
directions in the crystal. This is a typical scenario for changing the parameters that control
spontaneous symmetry breaking inside the crystalline material, changing the energetics of the
structural phase transition. In the systems we have examined in this paper, the presence of
external pressure may be directly mapped into specific forms of F that control the extended
system. This paper opens a new route for exploring systems of coupled scalar fields, intending
to mimic specific systems in applications to cosmology and to condensed matter. We postpone
to the near future some specific investigations.
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